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LINEAR ACCELERATION GUIDANCE SCHEME FOR LANDING
AND LAUNCH TRAJECTORIES IN A VACUUM

By Victor R. Bond
Manned Spacecraft’ Center

SUMMARY

Guidance equations are developed for guiding a spacecraft with finite
continuous thrust from an initial position and velocity to a terminal position
and velocity in & vacuum. The solution to this two-point boundary-value prob-
lem is obtained by assuming that the change in altitude and out-of-plane dis-
tance during the motion is small compared with the initial radius from the
center of the atiracting body to the spacecraft, and by prescribing linear ac-
celeration for each of the three acceleration components. The resulting thrust,
in general, is variable, but by introduction of a constraining relation,
constant-thrust trajectories can be generated. Similarly, by introduction of
another constraining relation, constant-pitch-angle trajectories may be gener-
ated. The guidance equations obtained may be used to guide a spacecraft to a
landing on the moon, or to guide a spacecraft during launching from the moon.
A comparison of these results with an optimum trajectory shows that the guid-
ance equations yield a near-optimum trajectory for the case of a range-free,
constant-thrust landing maneuver to a point near the lunar surface.

. INTRODUCTION

When a spacecraft, during lunar landing, launch, or abort, is to be guided
to a specified set of terminal conditions so that fuel usage is near minimum,
a set of guidance equations must be mechanized onboard the spacecraft that will
predict, at any time, the necessary thrust vector. In obtaining a solution for
the guidance equations, it is desirable that the following criteria be met:
The equations must be computationally simple; they must be suitable for use in
as many operational modes as possible; and they must yield a solution that is
near the optimum in fuel usage.

In order to obtain such a set of guidance egquations, the first step is
choosing a suitable approximation which would render the equations of motion
amenable to closed form solution. To simplify the equations, the change in
spacecraft altitude and out-of-plane distance is assumed to be small compared
with the. initial radius from the center of the attracting body. This assump-
tion is similar to the assumption of a uniform gravitational field. The next
step is to solve the resulting simplified two-point boundary-value problem
explicitly.



In this paper, the approach taken in solving the problem is to prescribe
that the radial, circumferential, and out-of-plane components of the thrust
acceleration are continuous and vary linearly with time. These approximate
equations of motion can then be solved in closed form. Each of the linear ac-
celeration components involves two parameters: One is the initial level of
the applied acceleration, and the other is the rate of change of the applied
acceleration. Since there are three acceleration components, a total of six
parameters are introduced which can be determined in closed form in terms of
the six spe¢ified terminal conditions. The equations for these parameters
constitute the guidance equations which will always insure that the spacecraft's
trajectory will meet the specified terminal conditions. By allowing one of the
dgcceleration parameters to vanish, the terminal range is unconstrained, and
only five specified terminal conditions are met. The pitch-angle control law
that results from this acceleration scheme is identical in form to the bilinear
tangent law which 1s shown in reference 1 to be optimum without regard to bound-
ary conditions or thrust-magnitude history. The assumptions made in reference 1
are that the gravitational field is uniform and that there are no aerodynamic

or other dissipative forces.

The approach taken in reference 2 is to assume that the acceleration com-
ponents are linear (in time) plus a gravity component. When the assumed
accelerations are substituted back into the equations of motion, the gravity
terms cancel completely. The work in this paper and in reference 2 was carried
out independently and concurrently. Reference 2 does not introduce the constant-

pitch-angle constraint.

Solutions to this two-point boundary-value problem, in general, require
variable thrust. If the condition that the thrust remain constant is imposed,
a relation may be introduced from which a burning time that will insure con-
stant thrust may be calculated. Similarly, if the condition that the pitch
angle remain constant is imposed, a second relation may be introduced from
which a burning time that will insure a constant pitch angle may be calculated.

SYMBOLS
A magnitude of acceleration vector
A acceleration vector
a, b, c parameters in acceleration specification defined by

equations (25)

a , ay, a linear acceleration component in radial, circumferential,
r P e o :

and out-of-plane directions, respectively
Cl’ 02, C5’ Ch’ 05 time coefficients in the altitude and altitude rate

equations defined by equations (16)
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Subscripts:

0

r

gravity at surface of earth, 32.1849 ft/sec2

gltitude

specific impulse

mass
radius of attracting body
cylindrical coordinates defined in figure 1

unit vectors defined in figure 1

thrust

time

weight

arc length or range along surface of attiracting body

initial level of applied acceleration in radial, circumferen-
tial, and out-of-plane directions, respectively

thrust azimuth angle defined in figure 1
thrust pitch angle defined in figure 1

universal gravitational constant times mass of attracting

body

magnitude of E

- -
position vector of spacecraft, ru, +zu,

burning time

rate of change of applied acceleration in radial, circumfer-
ential, and out-of-plane directions, respectively

derivative of ( ) with respect to t

value of variable when t = O

pertaining to initial radial direction



2 pertaining to z direction
T value of variable when t =7
¢ pertaining to circumferential, or X, direction

DERIVATION OF EQUATIONS

Solution to the Two-Point Boundary-Value Problem

The equations of motion for a
thrusting spacecraft in a gravita-
tional field are

¥ - r¢2 + B =g (1)

p3 T

-&djc-(r2¢) = ray (2)
Z + E% = a (3)
p

where 1
(2 2)2
p =\r +2

The coordinates r, @, and z
are the cylindrical coordinates of
the spacecraft as shown in figure 1.

The equations (1), (2), and (3)
may be solved analytically by pre-
scribing the linear acceleration
components

a, = A sin g cos B = a, + Yrt (&)
a¢ = A cos 0 cos B = a¢ + Y¢t (5)
a, =AsinB =a + Y, (6)

and making additional assumptions
regarding the smallness of 2z and
the change in r compared with the
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initial radius ro, and regarding the magnitude of the applied acceleration
terms.

Let the altitude be defined by h = r - R, and assume that during the
motion r changes only slightly from its initial value ro, so that in

equation (1), r may be replaced by Ty, and r by h. Also, assume that

z << 1, and may be neglected. Then equation (1) becomes
.e .2 _
h - r, 3= + —EE =a +Y¥ 1 (7N
o

Making the same assumptions as above, equation (2) becomes

21:1¢ + I'O¢ = CL¢ + ‘Y¢t

The first term on the left is the Coriolis acceleration which arises due
to the motion of the spacecraft relative to the rotating axis system defined

by the unit vectors ﬁ;, EB, and ﬁ;. This term will usually be small compared
with the applied acceleration a and will be neglected. With this assumption

and by introducing the surface range X = Rf, equation (2) finally reduces to

L
=+ ¥g) (®)

Equation (3) becomes

N2
1]

a, + ¥t (9)

if it is assumed thet 2z is very small so that the gravity term is negligible
compared with the applied acceleration a,-

The assumptions made in deriving equations (7), (8), and (9) are not as
stringent as those for the usual flat-body analysis which neglects both cen-
trifugal and Coriolis accelerations. In the present analysis, only the Coriolis
acceleration is neglected. The centrifugal acceleration is retained by the

inclusion of the - r0¢2 term in equation (7).

The differential equations, (7), (8), and (9), may now be integrated to
give the equations for the three velocity and the three position components.



ﬁ=flo+C1t+]2;C2t2+%03t5+3ﬁ04t4
X =}'(O +f—o<a¢t +%Y¢t2)
é=£o+czzt +%th2
h=ho+1r'10t+%clt +3C2t5+-]%03t
X =X, +)'<Ot +;Rg<% oz,¢t2 +%Y¢t5>
z =2, + iot + > cx.zt2 + %-YZtB

where ﬁo, io, éo, ho, XO’ and 24

1
+'5—C5't

1
+ 50 O

5

£

+

(10)
(11)
(12)
31—0 05’66 (13)
(14)
(15)

are specified values of the velocity and

position components when t = 0; and

X

O

2
L
- 2-!-(1

r

‘\

(16)

The solution is now determined for the approximate problem except for the
acceleration parameters, a¢, Y¢, S Yr’ x, and YZ, which determine the

thrust history, that is, the thrust magnitude and direction.

The six equations



L.

of motion, equations (10) to (15), may now be solved for these parameters in,
terms of the terminal conditions, where t =71, X = XT, X = XT, h = hT, h = hT,

z =% , and z = 2. - After considerable manipulation, the equations for the
R ¥

acceleration parameters become

__.250]3 T
“¢":?[T(X0-XT)+2XO+XT] ()
6 Tole2 . .

r C C C C
-k 952,18 \.2,_3.2_ k% 3_ 5k
@, = 5~ 5 XO + - (hT - ho) -3 T 3 T - T - 5 T (19)
ro R
Y ==~ 20 }i+£h -h +if1 +h -Crr--zCTa-l—‘-cer5 (20)
r R 5(0 T) T2(0 ) 3 710 7555
- 2120 - ; ;
onz---rr T(ZO Z‘T>+220+ZT:| (21)
6|2 . .
‘yz=':2[?<zo‘z'r)+zo+z¢] (22)

For a completely specified set of initial and terminal conditions, the
simplified boundary value problem is now completely solved. The only free

-parameter remaining is the burning time which may be arbitrarily chosen within

operational constraints.

Constant-Thrust Constraint

The preceding analysis yields a thrust history that is, in general,
variable. It can be shown that a solution to the special case of constant-
thrust magnitude may be obtained by proper choice of the burning time and the



thrust level. The acceleration for constant thrust (linearly varying mass)
is

A = _ m t = T/mo (23)
o~ g T 1- t
e sp €e sp

The total acceleration using the linear acceleration components given by
equations (%), (5), and (6) is of the form
1

A(r) = [a(w) +b(T)t + c(w)te]§ (2k)

where

a(t) = a¢2(7) + a?e(T) + a22(7) T
2
o(r) = Zaglr) ¥401) + o (1) ¥ (1) + o (0) 4,(n)] B ()
2 2 2
e(r) = v f(n) + 420 + v %) ]
Setting equation (23) equal to equation (2L) yields

1

= T
[a(T) + (1)t + c(T)ﬂe - —L;l%n— (26)

1l - 0 t
e sp

For specified initial and terminal conditions and thrust level, this equation
must be satisfied at any time by a burning time <. In particular, at t =0,

equation (26) becomes 1
2
Ea('ro)] - T/m,

Wnen the result is squared, the relation to be solved for the constant-thrust
burning time is’

T

2
2 2 2
o (70) o (70) = (70) = (&) @)
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Equation (27) is not sufficient to determine the burning time for constant
thrust since the thrust level T cannot be arbitrarily specified if six termi-
nal conditions are to be satisfied. If equation (26) is evaluated at the current
time t and the burning time T, two equations result which may be solved
simultaneously by iterative means for burning time and the constant thrust level.

For this case, the problem involves 14 unknowns (3 position components,
3 yvelocity components, 6 acceleration parameters, burning time, and thrust
level). These 14 unknowns are completely determined since 6 terminal conditions
are specified; 2 constraining relations are introduced to solve for burning time
and thrust level; and there are 6 equations of motion with initial conditions.

These values of burning time and thrust are those required to meet the
specified end conditions using constant thrust for the approximate problem. As
pointed out in & subsequent section, the required values of thrust and burning
time will vary slightly during descent or ascent (experience indicates that the
thrust varies only a few percent in magnitude). The acceleration parameters,
equations (17) to (22), may be calculated by using this value of T, and then
the trajectory may be calculated from equations (10) to (15).

Constant-Pitch-Angle Constraint

The pitch angle ¢ is found by dividing equation (4) by (5) to obtain

a + V¥ t
r

tan § = (28)

CL¢ + Y¢‘t
The time derivative of 6 is

. af - a ¥
9 = —Q—E————E—g cos2 ) (29)
(% + ¥gv)

For 8 to be constant, 8§ = 0, so equation (29) yields (in addition to the
trivial solutions, § = 90° and 270°),

CL¢YI_ - G.r‘i'¢ =0 (50)

The solution of this equation for burning time will insure a trajectory with a

constant pitch angle. The thrust magnitude is, in general, variable under this
constraint.



Relaxation of the Range Constraint

For some cases, it may be more useful to allow the range XT to be free.

For example, if the range is constrained, the required thrust might be greater
than the capability of the spacecraft's engines. Relaxing this end condition
will permit the thrust to be specified in the constant thrust mode.

In this case there are only seven equations, the six equations of motion
and one equation of constraint (equation (26) evaluated at current time t),
which insure constant thrust. There are also only five terminal conditions
specified, so there may be only 12 unknowns (3 position components, 3 velocity
components, 5 acceleration parameters, and burning time). One of the accelera-
tion parameters may be chosen arbitrarily. It is found to be convenient to set
Y¢ equal to O. Equation (18) may then be solved for XT.

_a.06 0T2 ’ '
Y¢—O—T2§—[T(XO-XT)+XO+XTJ

2]

X'r =XO +%()-(O+£("r) (31)

Equation (28) for the tangent of the pitch angle becomes linear in t

e

tan § =

Sy
Sy

In reference 1, it is shown that this is the form that the bilinear tangent law
takes when the final range is allowed to be free.

Substitution of equation (31) into equation (17) yields
O/r< ;
—— - 2
(XT XO) (3 )

The equations for the acceleration parameters . and Yr become

r C C
- O0g2 L/ _LN_ 2. __3,.°
o 7 2 X, +T(hT ho) TP (33)
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Yr =T 2a¢ E§'+ %%’(ho - hT) * f%'(ﬁo + ﬁT) - C5T ’ (34)

The acceleration parameters @, and YZ are unchanged.

USE OF THE SIMPLIFIED TWO-POINT BOUNDARY-VALUE SOLUTION
IN GUIDING A SPACECRAFT TN A GRAVITATIONAL FIELD

The solution that has been presented is valid only within the approxima-
tions made; that is, for small changes in altitude and in the 2z direction.
Therefore, there would be inherent errors if the equations were used to predict
the position and velocity of a spacecraft that is thrusting for long distances
over a spherical attracting body. These errors are minimized, however, if the
equations are solved again after a small interval of flight time. The initial
conditions and the burning time are changed after each such interval. The new
initial conditions are obtained from the numerical integration of the exact
equations (1), (2), and (3) with the use of the control variables 6, B, and A.
These control variables are generated from the same set of acceleration param-
eters through equations (4), (5), and (6) that were used in the simplified so-
lution given in equations (10) to (15). The smaller the time interval between
the updating of the initial conditions the more closely the trajectory will
meet the prescribed end conditions.

The performance of the acceleration-parameter relations as guidance equa-
tions has been evaluated by a simulation programed on an IBM 7094 digital com-
puter. A trajectory program which numerically solves equations (1), (2), and
(3) to predict the position and velocity of the spacecraft at any time is a
basic component of the simulation. A guidance program which continually com-
putes the acceleration and its direction by solving equations (17) to (22) is
the other basic component of the simulation. The computation procedure is
depicted graphically in figure 2.

The problem of combining the two programs for variable thrust is straight-
forward. Both sets of equations are given the same initial conditions. The
final conditions are also substituted into the acceleration parameter relations
given in equations (17) to (22). The acceleration parameters a¢, Y¢, @, ¥,

ué, and Y are computed with these conditions and are used to calculate ¢, B,
and A from equatlons (&), (5), (6), and (24) for the first step. The output,

X, X h, h Z, z, of the first integration step is then used as the initial
condltlons in equations (17) to (22) to compute 6, B, and A for the next
integration step. The calculation thus proceeds to the final conditions of the
problem,

11
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Figure 2.- Block diagram illustrating guidance simulation

If the terminal range is specified, a nearly constant-thrust trajectory
may be generated by solving equation (26), evaluated at t =0 (eq. (27)) and
burning time T, simultaneously by using updated initial conditions for thrust
and burning time after each integration step. The updated value of burning
time is used in equations (17) to (22), along with the updated initial conditions,
to calculate § and B as in the variable thrust case. In test cases that
were run, the thrust magnitude varied only about 3 percent.

If the range is allowed to be free, the thrust level is specified at some

constant value, and equation (27) is solved for burning time using the updated
initial conditions after each integration step.

12
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For constant-pitch-angle trajectories the burning time is updated after
each time step by solving equation (30) and then using the updated burning
time and initial conditions to update A and. B.

As the terminal conditions are approached, the burning time, which is
essentially the time to go before cut-off, decreases and reduces to zero at cut-
off. The acceleration parameters given by equations (17) to (22) approach
infinity as burning approaches zero. This difficulty was overcome in the ex-
amples presented by holding the values of the acceleration parameters constant
for the last few integration steps.

The two examples presented in figure 3 and table I illustrate some of the
results of the simulation. The first example (fig. 3) is a portion of a con-
stant thrust, range-free, in-plane, lunar-landing maneuver from an altitude of
50 000 feet to 10 000 feet with a thrust-to-initial-weight ratio of 0.4, The
linear-acceleration guidance solution is compared with a calculus-of-variations
minimm-fuel solution. Even though the trajectories are not the same, being
quite different in altitude and vertical velocity, the desired final conditions
are the same, and the burning times are very nearly equal. In both cases, the
amount of fuel burned was for all practical purposes the same. The total
burning time was 300.9 seconds. The acceleration parameters were held constant
during the last 14 seconds.

The second example (table I) is a portion of a lunar landing from an
altitude of 10 000 feet to 1000 feet in which a constant pitch angle of 139.69°
is used. In this example, it was specified that the final position must be
10 000 feet away from the initial plane of the motion. All of the six end
conditions were within reasonable tolerances of those specified. The final
altitude was only 5 feet higher than that specified, and the horizontal and
vertical velocities were each approximately 2 ft/sec greater than that speci-
fied. The fuel burned was 0.1028 of the initial weight. The total burning
time was 94.20 seconds. The acceleration parameters were held constant during
the last 0.2 second.

13
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TABLE I.- OUT-OF-PLANE CONSTANT-PITCH-ANGLE DESCENT FROM ALTITUDE
"OF 10 000 FEET TO 1000 FEET ABOVE LUNAR SURFACE

[6 = 139.69°; T = 94.20 sec; ISp = 315 sec]

Initial conditions Final conditions

Specified Integrated Specified

values values 7 values

X, ft . 0 48 000.8 48 000.0
hy £t » « « « . - 10 000 1003.0 1000.0
Z, Tt o « o« . . 0 10 000.9 10 000.0
X, ft/sec . . . . 891 .47 101.9% 100.0
h, ft/sec . . . . 17k .72 2.02 0
z, Ttfsec . . . .| 0 0.78 N 0

CONCLUDING REMARKS

A guidance scheme for landing and launch maneuvers in a central force
field has been investigated and simulated on a digital computer. The flexibil-
ity of the guidance scheme has been demonstrated by two examples. The first
example is a lunar-landing maneuver from an altitude of 50 000 to 10 000 feet
with a constant thrust-to-initial-weight ratio of 0.4. This case was compared
with a calculus-of-variations fuel-optimum trajectory, between the same end
points, and the fuel burned was the same for both methods. The second is a
lunar-landing maneuver from an altitude of 10 000 to 1000 feet with variable
thrust and a constant pitch angle of 139.69°. The specified end conditions
were attained in both examples.

Manned Spacecraft Center
National Aeronautics and Space Administration
Houston, Texas, December 4, 1964
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